

RFPORT

issued by an Accredited Testing Laboratory

Maria Rådemar Chemistry and Materials +46 10 516 51 65 maria.rademar@ri.se

Contact person RISE

Date 2018-08-22

8F018076

Reference

Page 1 (5)

Götessons Industri AB Stellan Bygård Rönnåsgatan 5 A 523 38 ULRICEHAMN

Emission Measurements of an Acoustic Screen

(2 appendices)

Object

One sample of an acoustic screen was delivered to RISE.

Sample marking: Screen IT A30

650 x 800 x 40 mm

Production date: week 29, 2018

Packaging: packed in card board

Date of arrival: 2018-07-26

Date of analysis: week 30 - 32, 2018

Assignment

Emission measurements according to **ANSI/BIFMA M7.1-2011(R2016)** (Standard Test Method for Determining VOC Emissions from Office Furniture Systems, Components, and Seating), with air samples taken from the test chamber at the 72nd and 168th hour regarding volatile organic compounds (VOC), formaldehyde and aldehydes.

For evaluation of test results the principle of shared risk is applied, i.e. for a max limit (\leq) a result \leq the limit complies and a result > the limit does not comply (ILAC G8 section 2.7).

Method

Prior the emission testing, the test specimen was stored in the original shipping container in a room with controlled climate conditions of 23 ± 2 °C and 50 ± 10 % RH. The test specimen was unpacked and placed in the test chamber 2018-07-27.

Test conditions in the chamber:

Chamber volume: 1.0 m^3 23 ± 0.5 °C Temperature: $50 \pm 3 \% RH$ Relative humidity: 1.0 h⁻¹ Air change rate: $1.0 \, \mathrm{m}^2$ Area (simplified): Loading: $1.0 \text{ m}^2/\text{m}^3$ 2018-07-30 Air samplings day 3: Air samplings day 7: 2018-08-03

RISE Research Institutes of Sweden AB

Tenax TA was used as adsorption medium for VOC. The tubes were thermally desorbed and analysed in accordance to RISE method 0601, similar to ISO 16000-6:2011 (Determination of volatile organic compounds in indoor and test chamber air by active sampling on Tenax TA sorbent, thermal desorption and gas chromatography using MS/FID). This means an analysis in a gas chromatograph and detection with a flame ionisation detector (FID) and mass selective detector (MS). The capillary column used is coated with 5% phenyl/95 % methylpolysiloxane. The FID signals are used for compound quantification. The total volatile organic compounds (TVOC) means compounds eluting between and including n-hexane to hexadecane, having boiling points in the range of about 70-260 °C. Minimum duplicate air samples were taken and the results are mean values.

Tenax TA was also used as adsorption medium for testing of volatile carcinogenic compounds according to EU Regulation No 1272/2008 Annex VI, cat 1A and 1B), (exclusive formaldehyde), $1 \mu g/m^3$ and above.

The samplings of formaldehyde, acetaldehyde and propanal were carried out with DNPH samplers. The samplers were analysed according to RISE method 2302, similar to ISO 16000-3:2001 -Indoor air--Part 3: Determination of formaldehyde and other carbonyl compounds – Active sampling method. This means analysis on a liquid chromatograph with absorbance detector. The other aldehydes (Butanal, Pentanal, Hexanal, Heptanal, Octanal, Nonanal and Benzaldehyde) were analyzed by GC-MS/FID by sampling on Tenax TA. Duplicate air samples were taken and the results are mean values.

Results

The results of the emission tests are summarized on the following pages in accordance with the BIFMA M7.1-2011(R2016) guidelines for reporting.

Table 1. Concentrations of Formaldehyde, Acetaldehyde and Total Aldehydes $(\mu g/m^3)$

Volatile organic compound	72 nd hour				168 th hour			
	# 1	# 2	Mean	% diff	# 1	# 2	Mean	% diff
Formaldehyde	< 2	< 2	< 2	1	< 2	< 2	< 2	1
Acetaldehyde	3	3	3	7	2	2	2	5
Total Aldehydes	28	27	27	4	24	24	24	1

Sampling cartridges: silica gel coated with DNPH. Sampling volumes: 50-80 L. Total aldehydes are defined as the sum of all normal-between n-C₁ and n-C₉-aldehydes plus benzaldehyde.

Table 2. Concentrations of VOCs between n-C₆ and n-C₁₆ measured by GC-MS/FID $(\mu g/m^3)$

Volatile organic compound	CAS	RT (min)	ID	72 nd hour			168 th hour				
				# 1	# 2	Mean	% diff	# 1	# 2	Mean	% diff
Alcohols											
1-Butanol	71-36-3	7.6	A	2	3	3	40	3	3	3	23
Terpenes											
α-Pinene	80-56-8	17.6	A	110	130	120	15	100	120	110	20
Camphene	79-92-5	18.4	В	2	2	2	15	2	2	2	50
β-Myrcene	123-35-3	19.2	В	5	5	5	2	5	5	5	2
β -Pinene	127-91-3	19.4	A	3	3	3	1	3	3	3	2
3-Carene	13466-78-9	20.4	A	130	120	130	1	120	120	120	1
p-Cymene	99-87-6	20.9	В	2	2	2	5	2	2	2	1
Limonene	138-86-3	21.1	A	5	6	6	10	5	4	4	18
Terpinolene	586-62-9	23.1	В	7	8	8	6	8	7	7	4
Glycols / Glycol Ethers											
1-Pentanol	71-41-0	10.7	A	9	9	9	2	8	8	8	5
Aldehydes											
Pentanal	110-62-3	8.7	A	7	6	7	6	6	6	6	3
Hexanal	66-25-1	12.1	A	17	17	17	3	15	15	15	1
Acids											
Hexanoic acid	142-62-1	17.8	A	6	5	6	27	5	7	6	27
Others											
Unkown (possibly: Decanoic acid, decyl ester), SVOC		39.8	В	7	8	8	10	8	8	8	1
TVOC		6.5-38	В	290	280	290	4	240	270	250	9

Sorbent tube and media: Stainless steel tube with Tenax-TA; Sampling volumes: $3-10\,L$

ID: A = quantified compound specific, B = quantified in toluene equivalents

The background of TVOC in the empty chamber was $< 10 \ \mu g/m^3$. The background of formaldehyde in the empty chamber was $< 1 \ \mu g/m^3$. The background values are subtracted. Measurement uncertainty: TVOC 15 % (rel), formaldehyde and acetaldehyde 30 % (rel).

The results in Table 3 are expressed as area specific emission rates. The area of the product is 1.0 m² (both sides). The calculated area is a simplified area according to ANSI/BIFMA M7.1-2011(R2016). The emission factors are calculated by:

^{1) 1,3-}dichloro-2-Propanol is a carcinogenic compound according to EU Regulation No 1272/2008 Annex VI, cat 1B

$$SER_A = \frac{Conc \times n}{L}$$

SER_A = area specific emission rate, in $\mu g/m^2h$ Conc = concentration of a VOC in the chamber, in $\mu g/m^3$ n = air exchange rate in the chamber, in changes per hour L = loading factor, in m^2/m^3 (area of sample/volume of chamber)

Table 3. Calculated Emission Factors for TVOC, Formaldehyd, Acetaldehyde, Total Aldehydes and identified VOCs $(\mu g/m^2h)$

Volatile organic compound	Emission factor			
	72 nd hour	168 th hour		
	(3 days)	(7 days)		
$TVOC_{Toluene}$	290	250		
Formaldehyde	< 2	< 1		
Acetaldehyde	3	2		
Total Aldehydes (µmol/m²h)	0.34	0.31		
4-Phenylcyclohexene	< 1	< 1		
Individual VOC:				
1-Butanol	3	3		
α-Pinene	120	110		
Camphene	2	2		
β-Myrcene	5	5		
β -Pinene	3	3		
3-Carene	130	120		
p-Cymene	2	2		
Limonene	6	4		
Terpinolene	8	7		
1-Pentanol	9	8		
Pentanal	7	6		
Hexanal	17	15		
Hexanoic acid	6	6		
Unkown (possibly: Decanoic acid, decyl ester), SVOC	8	8		

See Appendix 1 for gas chromatograms (FID spectra) and Appendix 2 for a photo of the tested product.

Evaluation of the test results

The data obtained from emission testing of the product is compared to the ANSI/BIFMA X7.1-2011(R2016) (Standard for Formaldehyde & TVOC Emissions of Low-emitting Office Furniture and Seating). These criteria must be met at the seven-day time point specified in the ANSI/BIFMA M7.1-2011(R2016), se Table 4.

Table 4.

Comparison of Emission Factors for the <u>Screen IT A30</u> and Maximum Emission Factors (ANSI/BIFMA X7.1-2011(R2016))

Volatile organic compound	Maximum Emission Factors Open Plan Office Environment	Emission Factors for the tested product	Pass / Fail
Formaldehyde (µg/m²h)	42.3	< 1	PASS
TVOC (μg/m ² h)	345	250	PASS
Total Aldehydes (µmol/m²h)	2.8	0.31	PASS
4-Phenylcyclohexene (μg/m²h)	4.5	< 1	PASS

Summary of the results

The emission factors for the tested product are in compliance with all the maximum emission factors of ANSI/BIFMA X7.1-2011(R2016)..

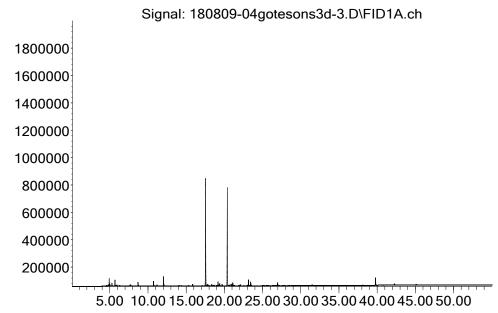
RISE Research Institutes of Sweden AB Chemistry and Materials - Chemistry

Performed by Examined by

Maria Rådemar Tove Mali´n

Appendices

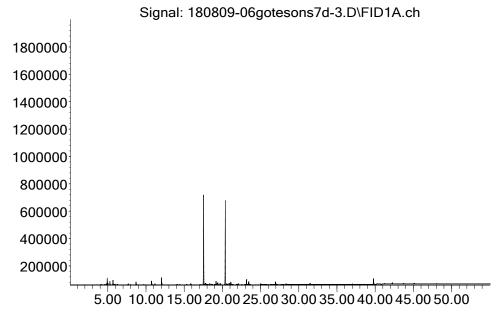
- 1. Gas Chromatograms
- 2. Photo of the test specimen



Appendix 1

Gas chromatograms

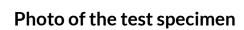
Screen IT A30, after 3 days:


Abundance

Time-->

Screen IT A30, after 7 days:

Abundance



Time-->

TVOC between C_6 and C_{16} , means compounds eluting between 6.5 and 38 minutes.

RI. SE

